

NAG C Library Chapter Contents

f08 – Least-squares and Eigenvalue Problems (LAPACK)

f08 Chapter Introduction

Routine Name	Mark of Introduction	Purpose
f08aec	7	<code>nag_dgeqrf</code> QR factorization of real general rectangular matrix
f08afc	7	<code>nag_dorgqr</code> Form all or part of orthogonal Q from QR factorization determined by <code>nag_dgeqrf</code> (f08aec) or <code>nag_dgeqpf</code> (f08bec)
f08agc	7	<code>nag_dormqr</code> Apply orthogonal transformation determined by <code>nag_dgeqrf</code> (f08aec) or <code>nag_dgeqpf</code> (f08bec)
f08ahc	7	<code>nag_dgelqf</code> LQ factorization of real general rectangular matrix
f08ajc	7	<code>nag_dorglq</code> Form all or part of orthogonal Q from LQ factorization determined by <code>nag_dgelqf</code> (f08ahc)
f08akc	7	<code>nag_dormlq</code> Apply orthogonal transformation determined by <code>nag_dgelqf</code> (f08ahc)
f08asc	7	<code>nag_zgeqrf</code> QR factorization of complex general rectangular matrix
f08atc	7	<code>nag_zungqr</code> Form all or part of unitary Q from QR factorization determined by <code>nag_zgeqrf</code> (f08asc) or <code>nag_zgeqpf</code> (f08bsc)
f08auc	7	<code>nag_zunmqr</code> Apply unitary transformation determined by <code>nag_zgeqrf</code> (f08asc) or <code>nag_zgeqpf</code> (f08bsc)
f08avc	7	<code>nag_zgelqf</code> LQ factorization of complex general rectangular matrix
f08awc	7	<code>nag_zunglq</code> Form all or part of unitary Q from LQ factorization determined by <code>nag_zgelqf</code> (f08avc)
f08axc	7	<code>nag_zunmql</code> Apply unitary transformation determined by <code>nag_zgelqf</code> (f08avc)
f08bec	7	<code>nag_dgeqpf</code> QR factorization of real general rectangular matrix with column pivoting
f08bsc	7	<code>nag_zgeqpf</code> QR factorization of complex general rectangular matrix with column pivoting
f08fcc	7	<code>nag_dsyevd</code> All eigenvalues and optionally all eigenvectors of real symmetric matrix (divide-and-conquer)
f08fec	7	<code>nag_dsytrd</code> Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
f08ffc	7	<code>nag_dorgtr</code> Generate orthogonal transformation matrix from reduction to tridiagonal form determined by <code>nag_dsytrd</code> (f08fec)
f08fgc	7	<code>nag_dormtr</code> Apply orthogonal transformation determined by <code>nag_dsytrd</code> (f08fec)
f08fqc	7	<code>nag_zheevd</code> All eigenvalues and optionally all eigenvectors of complex Hermitian matrix (divide-and-conquer)

f08fsc	7	nag_zhetrd Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form
f08ftc	7	nag_zungr Generate unitary transformation matrix from reduction to tridiagonal form determined by nag_zhetrd (f08fsc)
f08fuc	7	nag_zunmtr Apply unitary transformation matrix determined by nag_zhetrd (f08fsc)
f08gcc	7	nag_dspevd All eigenvalues and optionally all eigenvectors of real symmetric matrix, packed storage (divide-and-conquer)
f08gec	7	nag_dsptrd Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form, packed storage
f08gfc	7	nag_dopgr Generate orthogonal transformation matrix from reduction to tridiagonal form determined by nag_dsptrd (f08gec)
f08ggc	7	nag_dopmtr Apply orthogonal transformation determined by nag_dsptrd (f08gec)
f08gqc	7	nag_zhevd All eigenvalues and optionally all eigenvectors of complex Hermitian matrix, packed storage (divide-and-conquer)
f08gsc	7	nag_zhptrd Unitary reduction of complex Hermitian matrix to real symmetric tridiagonal form, packed storage
f08gtc	7	nag_zupgr Generate unitary transformation matrix from reduction to tridiagonal form determined by nag_zhptrd (f08gsc)
f08guc	7	nag_zupmtr Apply unitary transformation matrix determined by nag_zhptrd (f08gsc)
f08hcc	7	nag_dsbevd All eigenvalues and optionally all eigenvectors of real symmetric band matrix (divide-and-conquer)
f08hec	7	nag_dsbtrd Orthogonal reduction of real symmetric band matrix to symmetric tridiagonal form
f08hqc	7	nag_zhbevd All eigenvalues and optionally all eigenvectors of complex Hermitian band matrix (divide-and-conquer)
f08hsc	7	nag_zhbtrd Unitary reduction of complex Hermitian band matrix to real symmetric tridiagonal form
f08jcc	7	nag_dstevd All eigenvalues and optionally all eigenvectors of real symmetric tridiagonal matrix (divide-and-conquer)
f08jec	7	nag_dsteqr All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using implicit QL or QR
f08jfc	7	nag_dsterf All eigenvalues of real symmetric tridiagonal matrix, root-free variant of QL or QR
f08jgc	7	nag_dpteqr All eigenvalues and eigenvectors of real symmetric positive-definite tridiagonal matrix, reduced from real symmetric positive-definite matrix
f08jjc	7	nag_dstebz Selected eigenvalues of real symmetric tridiagonal matrix by bisection
f08jkc	7	nag_dstein Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in real array

f08jsc	7	nag_zsteqr All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from complex Hermitian matrix, using implicit QL or QR
f08juc	7	nag_zpteqr All eigenvalues and eigenvectors of real symmetric positive-definite tridiagonal matrix, reduced from complex Hermitian positive-definite matrix
f08jxc	7	nag_zstein Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
f08kec	7	nag_dgebrd Orthogonal reduction of real general rectangular matrix to bidiagonal form
f08kfc	7	nag_dorgbr Generate orthogonal transformation matrices from reduction to bidiagonal form determined by nag_dgebrd (f08kec)
f08kgc	7	nag_dormbr Apply orthogonal transformations from reduction to bidiagonal form determined by nag_dgebrd (f08kec)
f08ksc	7	nag_zgebrd Unitary reduction of complex general rectangular matrix to bidiagonal form
f08ktc	7	nag_zungbr Generate unitary transformation matrices from reduction to bidiagonal form determined by nag_zgebrd (f08ksc)
f08kuc	7	nag_zunmbr Apply unitary transformations from reduction to bidiagonal form determined by nag_zgebrd (f08ksc)
f08lec	7	nag_dgbbrd Reduction of real rectangular band matrix to upper bidiagonal form
f08lsc	7	nag_zgbbrd Reduction of complex rectangular band matrix to upper bidiagonal form
f08mec	7	nag_dbdsqr SVD of real bidiagonal matrix reduced from real general matrix
f08msc	7	nag_zbdsqr SVD of real bidiagonal matrix reduced from complex general matrix
f08nec	7	nag_dgehrd Orthogonal reduction of real general matrix to upper Hessenberg form
f08nfc	7	nag_dorgr Generate orthogonal transformation matrix from reduction to Hessenberg form determined by nag_dgehrd (f08nec)
f08ngc	7	nag_dormhr Apply orthogonal transformation matrix from reduction to Hessenberg form determined by nag_dgehrd (f08nec)
f08nhc	7	nag_dgebal Balance real general matrix
f08njc	7	nag_dgebak Transform eigenvectors of real balanced matrix to those of original matrix supplied to nag_dgebal (f08nhc)
f08nsc	7	nag_zgehrd Unitary reduction of complex general matrix to upper Hessenberg form
f08ntc	7	nag_zunghr Generate unitary transformation matrix from reduction to Hessenberg form determined by nag_zgehrd (f08nsc)
f08nuc	7	nag_zunmhr Apply unitary transformation matrix from reduction to Hessenberg form determined by nag_zgehrd (f08nsc)
f08nvc	7	nag_zgebal Balance complex general matrix
f08nwc	7	nag_zgebak Transform eigenvectors of complex balanced matrix to those of original matrix supplied to nag_zgebal (f08nvc)

f08pec	7	nag_dhseqr Eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
f08pkc	7	nag_dhsein Selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
f08psc	7	nag_zhseqr Eigenvalues and Schur factorization of complex upper Hessenberg matrix reduced from complex general matrix
f08pxc	7	nag_zhsein Selected right and/or left eigenvectors of complex upper Hessenberg matrix by inverse iteration
f08qfc	7	nag_dtrexc Reorder Schur factorization of real matrix using orthogonal similarity transformation
f08qgc	7	nag_dtrsen Reorder Schur factorization of real matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
f08qhc	7	nag_dtrsy1 Solve real Sylvester matrix equation $AX + XB = C$, A and B are upper quasi-triangular or transposes
f08qkc	7	nag_dtrevc Left and right eigenvectors of real upper quasi-triangular matrix
f08qlc	7	nag_dtrsna Estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
f08qtc	7	nag_ztrexc Reorder Schur factorization of complex matrix using unitary similarity transformation
f08quc	7	nag_ztrsen Reorder Schur factorization of complex matrix, form orthonormal basis of right invariant subspace for selected eigenvalues, with estimates of sensitivities
f08qvc	7	nag_ztrsy1 Solve complex Sylvester matrix equation $AX + XB = C$, A and B are upper triangular or conjugate-transposes
f08qxc	7	nag_ztrevc Left and right eigenvectors of complex upper triangular matrix
f08qyc	7	nag_ztrsna Estimates of sensitivities of selected eigenvalues and eigenvectors of complex upper triangular matrix
f08sec	7	nag_dsygst Reduction to standard form of real symmetric-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by nag_dpotrf (f07fdc)
f08ssc	7	nag_zhegst Reduction to standard form of complex Hermitian-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by nag_zpotrf (f07frc)
f08tec	7	nag_dspgst Reduction to standard form of real symmetric-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B factorized by nag_dpptrf (f07gdc)
f08tsc	7	nag_zhpgst Reduction to standard form of complex Hermitian-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B factorized by nag_zpptrf (f07grc)
f08uec	7	nag_dsbgst Reduction of real symmetric-definite banded generalized eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same bandwidth as A

f08ufc	7	nag_dpbstf Computes a split Cholesky factorization of real symmetric positive-definite band matrix A
f08usc	7	nag_zhbgst Reduction of complex Hermitian-definite banded generalized eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same bandwidth as A
f08utc	7	nag_zpbstf Computes a split Cholesky factorization of complex Hermitian positive-definite band matrix A
f08wec	7	nag_dgghrd Orthogonal reduction of a pair of real general matrices to generalized upper Hessenberg form
f08whc	7	nag_dggbal Balance a pair of real general matrices
f08wjc	7	nag_dggbak Transform eigenvectors of a pair of real balanced matrices to those of original matrix pair supplied to nag_dggbal (f08whc)
f08wsc	7	nag_zgghrd Unitary reduction of a pair of complex general matrices to generalized upper Hessenberg form
f08wvc	7	nag_zggbal Balance a pair of complex general matrices
f08wwc	7	nag_zggbak Transform eigenvectors of a pair of complex balanced matrices to those of original matrix pair supplied to nag_zggbal (f08wvc)
f08xec	7	nag_dhgeqz Eigenvalues and generalized Schur factorization of real generalized upper Hessenberg form reduced from a pair of real general matrices
f08xsc	7	nag_zhgeqz Eigenvalues and generalized Schur factorization of complex generalized upper Hessenberg form reduced from a pair of complex general matrices
f08ykc	7	nag_dtgevc Left and right eigenvectors of a pair of real upper quasi-triangular matrices
f08yxc	7	nag_ztgevc Left and right eigenvectors of a pair of complex upper triangular matrices
